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ABSTRACT

Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic

redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates

anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration—a

process contributing to the mobilization of As. Repeated oxidation and reduction in near-surface sediments,

which contain 10–40 mg kg�1 As, lead to the eventual downward movement of As to the underlying aqui-

fer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can

be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental sam-

ples. However, few studies have successfully amplified arrA from sediments without prior enrichment,

which can drastically shift community structure. In the present study, we examine the distribution and

diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of

near-surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations.

We report successful amplification of 302 arrA gene sequences (72 OTUs) from near-surface Cambodian

soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%)

formed a well-supported clade that is phylogenetically distinct from previously reported sequences from

Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known

Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter

sp. in arsenic mobilization in these regions.
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INTRODUCTION

Millions of people in South and Southeast Asia are currently

exposed to arsenic (As) concentrations as high as three

orders of magnitude greater than the World Health Organi-

zation (WHO) suggested limit of 10 lg L�1. Arsenic-bear-

ing minerals derived from the Himalayas are transported

down river channels and deposited into deltas below, includ-

ing the Ganges–Brahmaputra–Meghna (Nickson et al.,

2000; Polizzotto et al., 2008), Red River (Berg et al.,

2001), and Mekong River deltas (Buschmann et al., 2007;

Kocar et al., 2008; Polizzotto et al., 2008). Aquifer As con-

centrations in one of the most densely populated areas of

the Mekong Delta (between the Mekong and Basaac Rivers)

range from 100 to >1000 lg L�1, with an average of

~ 500 lg L�1 (Kocar et al., 2008; Polizzotto et al., 2008).

Redox processes within near-surface sediments are

responsible for the supply and release of As into groundwa-

ter (Kocar et al., 2008; Polizzotto et al., 2008). Oxidation

of Himalayan-derived As-bearing sulfur minerals deposited

in the surface sediments releases As, which is temporarily

immobilized through adsorption onto Fe(III) oxides,

hydroxides, and oxyhydroxides (collectively referred to as

oxides) in the surrounding sediment matrix. Subsequent

reductive dissolution of Fe(III) oxides and As(V) reduction

under reducing conditions during the wet season leads to

desorption and partitioning of As into the aqueous phase.

Arsenic(V) is the predominant oxidation state under oxic

conditions and is generally considered the less mobile

species. In contrast, As(III) dominates under reducing con-

ditions and is more labile and thus more mobile under

flow conditions (Tufano & Fendorf, 2008; Tufano et al.,
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2008). Therefore, characterization of factors and processes

responsible for the reduction in As(V) is crucial toward

understanding As transport.

Under anaerobic conditions, a major pathway contribut-

ing to the transformation of As(V) is microbial respiration

of As(V), which has been shown to provide greater ener-

getic yield than respiration on the common iron oxides

goethite and hematite under environmental conditions in

Cambodian sediments (Kocar & Fendorf, 2009). Dissimi-

latory As(V)-reducing bacteria (DARB) have been isolated

from a wide range of environments and are phylogeneti-

cally and physiologically diverse (Oremland & Stolz, 2003;

Oremland et al., 2005; Hollibaugh et al., 2006; Stolz

et al., 2006; Kulp et al., 2008). A number of studies have

identified and characterized enzymes that catalyze As(V)

respiration (Krafft & Macy, 1998; Afkar et al., 2003; Salti-

kov & Newman, 2003; Saltikov et al., 2003). The dissimi-

latory As(V) reductase is a periplasmic heterodimer

composed of the molybdenum-containing terminal reduc-

tase, ArrA (87–110 kDa), and a Fe-S cluster subunit, ArrB

(25.7–34 kDa), which provides electrons to ArrA from

c-type cytochromes (Krafft & Macy, 1998).

While model organisms are invaluable for deciphering

biochemical mechanisms responsible for As transformation

under constrained laboratory conditions, these organisms

and their functional genes may not be representative of those

found in the environment. To this end, the diversity of arrA

has been explored in a variety of environments, including

estuarine sediments of Chesapeake bay (Song et al., 2009),

aquifer sediments from West Bengal (H�ery et al., 2008),

As-rich soda lakes (Kulp et al., 2008; Hoeft et al.,

2010), and various groundwater sources (Barringer et al.,

2010; Giloteaux et al., 2013). However, the extent of diver-

sity of native arrA sequences surveyed in many of these stud-

ies has been limited due to difficulty in amplifying sequences

from untreated soil samples, and hence a large majority of

arrA sequences documented to date are from incubations

studies. Previously, Lear et al. (2007) examined arrA genes

in an acetate-amended Cambodian sediment core collected

from 9 m depth after 16 and 30 days of incubations, but

were unable to amplify any products from unamended sam-

ples. H�ery et al. (2014) discovered 12 new arrA phylotypes

in an unamended Holocene soil core taken at 11 m depth

from Cambodia. However, further investigation into the

overall As(V)-reducing bacteria communities in the Mekong

Delta is needed, particularly at shallower depths (≤4 m

below surface) where reduction–oxidation processes are

responsible for As release to the aquifer (Kocar et al., 2008;

Polizzotto et al., 2008). Here, we report the discovery of

highly diverse communities of As(V)-respiring bacteria in

unamended near-surface sediments from the Mekong Delta

of Cambodia, at four sites and multiple depths (10, 50, 100,

200, and 400 cm). We report successful amplification and

analysis of 302 arrA sequences from naturally occurring,

unamended surface sediments, increasing the existing

sequence database of arrA phylotypes in unaltered sedi-

ments by more than twofold. Statistical analysis shows that

communities are clustered by sample site rather than by

depth, likely indicating arsenic concentrations do not dictate

arrA phylotype distribution.

RESULTS AND DISCUSSION

Phylogenetic analysis of arrA genes in Cambodian

sediments

The diversity of As(V)-reducing bacteria was assessed in

near-surface (≤4 m) Cambodian sediments by amplifying

the arrA functional gene from sediment samples without

prior enrichment (e.g., carbon amendment, incubations).

The concentration of aqueous constituents in porewater

extracted from sediments can be found in Table 1. A total of

302 non-chimeric sequences were included in a neighbor-

joining tree of arrA phylogeny (Fig. 1). OTUs were

assigned based on 90%, 95%, and 99% sequence similarity

yielding a total of 72, 106, and 174 arrA OTUs, respec-

tively, where more dissimilar sequences are defined as the

same OTU under a lower percentage cutoff value, hence

leading to greater number of OTUs as the percentage of

sequence similarity required increases. Only OTUs identified

using the 90% sequence similarity cutoff were used for phy-

logenetic analysis, where asymptotic behavior of rarefaction

curves demonstrates that sequencing depth was sufficient

(Fig. S1). Use of 99% sequence similarity cutoff would have

required additional sequencing efforts to accurately capture

the diversity, which supports our finding that near-surface

Cambodian sediments harbor previously undocumented

arrA diversity. In general, arrA sequences from Cambodian

near-surface sediments formed a separate monocladistic

group (Cluster A) that is most similar to the arrA sequences

of Geobacter uranireducens (sequence similarities ranges

from 48.9 to 74.8%), Geobacter sp. OR-1 (48.5 to 76.2%),

and Geobacter lovleyii (49.5 to 75%). A great majority of

these sequences (71% of sequences; 80% of OTUs) formed a

cluster distinct from previously reported Southeast Asian

arrA sequences (Fig. 1). Generation of a maximum-likeli-

hood amino acid tree supports the topology of near-surface

Cambodian sequences relative to DARB isolates (Fig. S3).

The distant relationship of our Cambodian near-surface

sequences to other Southeast Asian sequences is likely due

to enrichment of strains capable of metabolizing specific

carbon sources (i.e., acetate or lactate) or selection for As-

tolerant strains in previous studies (Lear et al., 2007; H�ery

et al., 2014), with the exception of OTU 31, which falls in

close proximity to clones from unamended Cambodian

sediments retrieved from 11 m depth (H�ery et al., 2014).

Interestingly, H�ery et al. (2014) showed that Desulfosporosi-

nus sp. was the closest cultivated DARB relative to sequences
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amplified from 11-m-deep unamended samples, followed by

a transition toward a community dominated by Geobacter-

like arrA sequences after either acetate or lactate amend-

ments. By contrast, our samples from shallower, more car-

bon-rich depths show highest arrA resemblance to

Geobacter sp. without amendment. Interspersed within the

near-surface Cambodian cluster (Fig. 2) are sequences from

biogeochemically diverse environments including inner

coastal plain groundwater (New Jersey) (Barringer et al.,

2010), Chesapeake Bay sediments (Song et al., 2009),

Cache Valley Aquifer sediment (Mirza et al., 2014), and

Japanese paddy soils, demonstrating the complexity of fac-

tors that likely dictate arrA distribution.

The majority of remaining sequences (13% of sequences,

15% of OTUs) fell within Cambodian near-surface Cluster

B, a strongly supported cluster containing no cultured rep-

resentatives. This group is more distantly related to exist-

ing DARB isolates than Cluster A sequences and is almost

entirely composed of Cambodian sequences. H�ery et al.

(2014) stated that 10 arrA sequences acquired from Cam-

bodian sediments following enrichment/stimulation with

As(V) and acetate amendments cluster separately from

West Bengal sequences; however, sequences from that

study are not publicly available and thus we are unable to

make comparisons to those obtained during our current

study. Nevertheless, our current dataset supports the con-

clusion that clones from Cambodia are indeed distinct

from those amplified from West Bengal.

Community diversity analysis

Beta diversity of As(V)-reducing communities was exam-

ined using NMDS to visualize community similarity

through ordination, and analysis of similarity (ANOSIM)

was used to quantitatively test whether communities were

significantly different between sites and depths (diversity

indices for each sample is provided in Table 2). NMDS

results show that As(V)-reducing communities can gener-

ally be clustered based upon site more so than by depth,

particularly for sites A, T, and B (Fig. 3). Although execut-

ing the ordination with only two axes resulted in relatively

high stress (>1.3, results not shown), resultant clusters in

two dimensions are consistent with use of three dimen-

sions. To quantitatively test the significant difference

between As(V)-reducing communities based upon site and

depth variables, ANOSIM was employed using Bray–Curtis
dissimilarity distances (Fig. S2). ANOSIM results show

that sequences are more similar within sites than between

sites (P < 0.07), but with no significance when grouped by

depth (P > 0.2), where pore water arsenic concentrations

are more similar, demonstrating that similar geochemical

conditions are not necessarily indicative of the presence of

a specific arrA phylotype. These results may complement

recent findings from Giloteaux et al. (2013) demonstrating

that factors other than As availability regulate the transcrip-

tion of arrA. Cluster analysis based upon season also did

not produce significant results (results not shown).

Dry season conditions in Cambodia lead to the forma-

tion of large cracks, due to the high shrink-swell capacity of

clays, promoting aeration and presence of As(V) species,

with subsequent adsorption of As on Fe(III) oxides at shal-

low depths (<1 m) (Kocar et al., 2008). Arsenic(V)-respir-

ing micro-organisms are likely most active in these near-

surface sediments where fresh carbon sources are deposited

annually (e.g., detritus from plants and animals) and As(V)

is available. The surface sediments are reduced upon wet-

ting during the monsoon season, giving rise to biogeo-

chemically diverse conditions, which is reflected in the

Table 1 Concentration of aqueous constituents in porewater samples

Fe Mn K Mg Ca Na P S

Site Season

Depth

cm

As

lg L�1 mg L�1

A Dry 10 8.3 3.5 5.3 0.6 0 165 44.3 0.002 9.5

A Wet 10 9.7 2.1 4.7 0.6 0 163 49.6 0.003 12.5

A Dry 50 11.4 2.6 4.3 0.5 38.7 176 36.0 0.04 4.9

A Wet 50 13.7 1.6 2.0 10.2 38.1 84.6 30.0 1.2 14.1

A Wet 100 7.5 0.71 0.3 24.7 34.6 7.8 20.2 0.2 3.7

A Dry 200 333 16.1 1.0 2.4 23.5 86.7 22.4 0.4 0.5

A Wet 200 196 15.5 1.1 1.2 30.7 107 20.6 0.3 0.6

A Dry 400 367 16.9 1.1 0.6 32.9 119 28.4 0.4 0.5

B Wet 10 5.8 1.0 0.3 10.1 14.8 5.7 16.3 0.1 19.7

B Wet 100 4.7 0.45 0.07 133 47.0 11.9 45.0 0.1 62.4

B Wet 200 26.9 1.9 0.03 5.4 27.0 8.5 44.1 0.2 102

C Dry 10 6.1 0.07 0.1 1.1 6.08 20.4 6.2 0 0.7

C Dry 400 162 8.9 1.0 1.5 40.0 73.6 86.9 1.4 12.0

T Wet 50 34.2 0.3 3.8 3.4 48.6 149 113 0.07 21.1

T Wet 100 24.7 0.6 4.2 19.8 52.0 154 68.9 0.03 4.3
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diversity of arrA phylotypes. However, deeper depths

(>4 m) remain reduced throughout both the dry and wet

seasons, where As concentrations are no longer strongly

correlated with Fe and alkalinity (Kocar et al., 2008;

Stuckey et al., 2015). Further, because arsenic is present

mostly in reduced forms [as As(III)] at these depths, As

(V)-respiration plays a minor role in As cycling. Our

findings provide an updated catalog of the arrA phylotypes

that may have more prevalent roles in As(V) reduction in

near-surface, redox-fluctuating sediments in Cambodia.

Future studies utilizing transcriptomic approaches will be

helpful in elucidating more directly whether there is a clear
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Fig. 1 Neighbor-joining phylogenetic comparison of 302 arrA DNA sequences from unamended Cambodian near-surface sediments at four sites and five

depths to arrA amplified from other environments and cultivated As(V)-respiring bacteria (in bold; clone names are prefixed OTU). The total number of

sequences within reference wedges is indicated in parentheses; the number of sequences from the present study are shown within colored symbols. Parenthe-

ses indicate number of OTUs within the distinct Mekong Delta near-surface cluster (shown in red, expanded Fig. 2) or the number of reference sequences in

reference wedges. Percentage of trees with repeatable taxa clusters (as determined by 1000 replicates of bootstrap test) is noted at each cluster node. Scale

bar represents 0.05 substitutions per nucleotide position.
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Fig. 2 Expanded view of Cambodian near-surface arrA cluster A calculated using neighbor-joining method. The total number of sequences within references

wedges is indicated in parentheses; a number of sequences from the present study are shown within colored symbols. Percentage of trees with repeatable taxa

clusters (as determined by 1000 replicates of bootstrap test) is noted at each cluster node. Scale bar represents 0.05 substitutions per nucleotide position.
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distinction between those arrA phylotypes active in redox-

fluctuating soils compared to permanently reduced soils

and sediments.
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