1	
2	Contribution of Urea to Nitrite Production in Southern Ocean Waters with Contrasting
3	Nitrifying Communities
4	
5	J T. Hollibaugh ^{a,#} ; A. Okotie-Oyekan ^a , J. Damashek ^{a,*} ; H. Ducklow ^b ,
6	B. N. Popp ^c ; N. Wallsgrove ^c and T. Allen ^c
7	
8	
9	^a Department of Marine Sciences, University of Georgia, Athens, GA, USA
10	^b Lamont-Doherty Earth Observatory, Columbia University, Palisades NY, USA
11	^c Department of Earth Sciences, University of Hawai'i at Manoa, Honolulu, HI, USA
12	#Corresponding author: James Hollibaugh (aquadoc@uga.edu) ORCID: 0000-0001-8037-160X
13	*Present address: Biology Department, Hamilton College, Clinton, NY USA
14	
15	
16	
17	
18	
19	RUNNING HEAD: Southern Ocean nitrification
20	DRAFT: 18 February, 2024
21	

22 ABSTRACT (247 words)

We compared the contribution of ammonia and urea to nitrite production in >100 samples of
Southern Ocean waters with abundant and diverse ammonia-oxidizing archaeal (AOA)
communities. Ammonia (AO) and urea (UO) oxidation rates were distributed uniformly within a
water mass across coastal and slope waters west of the Antarctic Peninsula; however, rates and
AOA community composition displayed strong vertical gradients. Rates in most samples from
Antarctic surface and slope water were at or below the limit of detection. Highest mean rates of
both processes were in the Winter Water (WW, epipelagic, 21.2 and 1.6 nmol N $L^{-1} d^{-1}$), and the
Circumpolar Deep Water (CDW, mesopelagic, 7.9 and 2.5 nmol N L ⁻¹ d ⁻¹), for AO and UO,
respectively. However, we also found that the response of AO and UO to substrate amendments
varied by water mass. AO rates in WW samples increased by $\sim 200\%$ with 44 vs 6 nM
amendments, but decreased (down to 7%) in CDW samples. UO rates responded similarly, but to
a lesser degree. This response suggests that even low $\mathrm{NH_4^+}$ amendments may inhibit AO by
mesopelagic Thaumarchaeota populations. AO and UO rates were not correlated, nor were they
correlated with the abundance or ratios of abundance of marker genes, or with the concentrations
of ammonium or urea. Our data suggest that while ammonium is the primary substrate, urea-N is
responsible for a significant fraction (~25% of that from AO alone) of nitrite production in the
Southern Ocean, comparable to its contribution at lower latitudes.

40

41 **IMPORTANCE** (149 words)

42 Southern Ocean nitrification fuels denitrification in oxygen depleted zones at higher latitudes, 43 one of the controls of N:P ratios in the global ocean. N₂O, a powerful greenhouse gas, is by-44 product of nitrification. We contrast the contributions of ammonium and urea-N to nitrification 45 in the Southern Ocean. Our work constrains rates and demonstrates that the contribution of urea-46 N to nitrite production in polar waters is comparable to that in temperate oceans. Correlations 47 between activity and the abundance or ratios of Thaumarchaeota marker genes were weak, 48 questioning their use as indicators of activity. We document differential responses of activity to 49 substrate amendments by water mass: enhanced in epipelagic but inhibited in mesopelagic 50 samples. We interpret this difference in the context of community composition and the 51 production of reactive oxygen species. Our insights into environmental controls of nitrification 52 are relevant to microbial ecologists studying Thaumarchaeota and to modeling the global 53 nitrogen cycle. 54 **KEYWORDS:** Thaumarchaeota, *Nitrospina*, nitrification, ammonia-oxidation, urea, *ureC*,

55 reactive-oxygen, Antarctica, PAL-LTER, Southern-Ocean

56

57

58 **INTRODUCTION** (Main Text: 4,930 words).

59 Ammonia-oxidizing Thaumarchaeota (also referred to as Ammonia-Oxidizing Archaea, 60 AOA, or the class *Nitrososphaeria*) play an important role in the nitrogen cycle by oxidizing 61 ammonia to nitrite (1-3), and they are abundant in Antarctic coastal waters (4-6). Identification 62 of genes for putative ureases and urea transporters in Thaumarchaeota genomes (7, 8) suggested 63 that they might also be able to oxidize N supplied as urea, potentially increasing the rate of nitrite 64 production *in situ* over that measured using ammonium. Subsequent work (9-11) demonstrated 65 that the ability to oxidize urea-N is not universal in Thaumarchaeota, even among closely related 66 isolates from the same environment. Alonso-Sáez et al. (12) used ratios of the abundance of 67 Thaumarchaeota *ureC* to 16S rRNA (*rrs* hereinafter) or *amoA* genes, and incorporation into 68 biomass of C supplied as urea, to infer that urea might be particularly important as a source of 69 reduced N to Thaumarchaeota populations in polar (Arctic and Antarctic) waters. Results of their 70 initial gene survey were replicated in subsequent work in the Arctic (13). Relatively few studies, and neither of these, have used ¹⁵N tracers to compare the oxidation rates of N supplied as urea 71 72 (UO) and ammonium (AO) directly in the same sample. Recent work (14-17) has demonstrated 73 that the contribution of urea to nitrification in the open ocean can be significant, if highly 74 variable.

There are few measurements of UO in samples from Antarctic waters, thus the contribution of urea-N to nitrite production there, relative to AO or other processes, is understudied and poorly constrained. Pilot experiments performed using samples of Antarctic coastal waters found that the mean ratio of UO/AO in 3 samples from the Winter Water water mass was 1.9, while it was 0.3 in 3 samples from the Circumpolar Deep Water. A 2018 cruise to the continental shelf and slope west of the Antarctic Peninsula provided an opportunity to

81 compare the relative contributions of urea-N and NH₄⁺ to nitrite production in a larger data set 82 and to perform process studies. We examined the response of AO and UO to substrate 83 amendments to gain insight into the factors controlling rates in situ and to evaluate the effect of 84 tracer additions on measured rates. We assessed the effect of incubation temperature on rates to 85 evaluate the significance to rate measurements of deviations of incubation temperatures from *in* 86 situ, and to assess the potential response of polar nitrification to warming oceans. We examined 87 the correspondence between AO and UO rates and genetic markers for these processes to 88 evaluate the use of gene ratios (12) as proxies for activity. Finally, we compared the relative 89 contributions of UO and AO to nitrite production in samples from the Southern Ocean with their 90 contributions at other locations.

91

92 **RESULTS**

93 **Description of the study area.** Cruise LMG1801 spanned 4 weeks during the Antarctic 94 summer (6 January to 4 February, 2018, Supplemental Table 1) and sampled stations on the PAL 95 LTER sampling grid, a strip of the continental shelf and slope west of the Antarctic Peninsula 96 700 km parallel to the coast by 200 km perpendicular to the coast (Supplemental Figure 1). This 97 is a physically dynamic coastal ocean (18) in a region of extreme seasonality. There are 4 water 98 masses in the study area (18, 19): Antarctic Surface Water (ASW, sampled at 10 or 15 m); the 99 Winter Water (WW, sampled at the water column temperature minimum, 35-100 m depending 100 on location); the Circumpolar Deep Water (CDW, sampled at 175 - 1,000 m); and Slope water 101 (SLOPE, sampled at 2,500 to 3,048 m, generally ~ 10 m above the bottom at stations on the slope 102 or over basins on the shelf).

103

Figure 1. Oxidation rates of N supplied as NH_4^+ (AO, panel a) or urea (UO, panel b) as functions of amendments with ¹⁵N-labeled substrates (as nmol L⁻¹ of the substrate, not of N in the case of urea). This figure combines data from 3 stations as indicated by the legend in panel a. Sample depths are given in Supplemental Table 1. Rates have been normalized relative to the rate measured in the same sample with a 6 nM amendment: ((rate at X nM/rate at 6 nM)*100). Amendments are normalized (as "enrichment factor") as the increase in total substrate concentration relative to ambient: (((amendment + ambient)/ambient)*100). Vertical and horizontal dashed lines show 100%: no enrichment and no response, respectively.

105	Response of AO and UO to ¹⁵ N amendments. Responses of WW versus CDW
106	populations to ¹⁵ N amendments differed markedly, as shown in Figure 1 and Supplemental
107	Figure 2. Figure 1 plots rates measured at higher amendments normalized to rates measured with
108	6 nM amendments in the same sample as ((rate at [X]/rate at 6 nM)*100), versus substrate
109	enrichment as (((amendment+ambient)/ambient)*100). This calculation assumes that 6 nM
110	represents a true tracer addition with no effect on <i>in situ</i> rates, which is not necessarily correct.
111	AO rates in WW samples increased (to >200%) with increasing amendments of $^{15}NH_4^+$. In
112	contrast, AO rates in CDW samples were reduced significantly (to 7%) by increasing $^{15}NH_4^+$
113	amendments (Figure 1, Supplemental Table 2). This figure also shows that rates in both WW
114	and CDW samples responded significantly to substrate enrichments that were <200%. UO rates
115	in WW samples also increased with increasing ¹⁵ N-urea amendments (Figure 1, Supplemental
116	Table 2), while UO rates in CDW samples decreased with increasing urea amendments. CDW
117	populations had a stronger response to NH_4^+ than to urea amendments (Figure 1); however, the
118	difference was not significant (2-tail <i>t</i> -tests, $p=0.069$ and $p=0.081$ for 44 vs 6 and 440 vs 6 nM
119	amendments, respectively).

Response of AO to incubation temperature. Production of ${}^{15}NO_x$ from ${}^{15}NH_4^+$ (we did 120 121 not test urea) increased with temperature to maxima at 5-10 °C, then declined. The same pattern 122 was seen with samples from two different stations and with both WW and CDW (Supplemental 123 Figure 3). We found that rates were greater than the limit of detection (>LD) in incubations at 0 124 °C at all stations and depths tested, and were >LD in incubations at -1.0 °C in 3 of the 4 samples 125 tested. Mean Q₁₀ values for AO calculated for the interval 0 to 3 or 5 °C averaged 2.24; 126 (Supplemental Table 3), similar to the value (1.1) reported by (20). However, Q_{10} values calculated for the interval -1.8-0 °C were much larger: 12.3-14.7. The Percival[®] incubator we 127

128	used maintained sample temperatures at (median, max, min) 0.25, 2.85, -1.50 °C, while in situ
129	temperatures for our samples were: WW, -1.28, 0.16, -1.69; and CDW, 1.40, 2.04, -0.04
130	(Supplemental Table 4). The medians of AO rates measured in WW and CDW samples are 9.1
131	and 5.1 nmol N L^{-1} d ⁻¹ . Assuming Q ₁₀ =2.24 applies to all of our samples, medians of AO rates <i>in</i>
132	<i>situ</i> would be 8.0 and 5.6 nmol $L^{-1} d^{-1}$, or 0.89 and 1.1 times the rates we report. A similar
133	calculation using the mean Q_{10} for the interval -1.8 – 0 °C (13.5) yields a median <i>in situ</i> rate for
134	WW samples of 6.1 nmol L ⁻¹ d ⁻¹ , or \sim 70% of the measured rate. We assume these corrections
135	would apply to UO rates as well. We have not corrected the data reported in Supplemental Table
136	1 for the 10 to 30 % error due to differences between <i>in situ</i> and incubation temperatures. This
137	observation also suggests a relatively small change in nitrite production by AO, driven strictly by
138	temperature, in a warming Southern Ocean.

139 Variation within water masses. The study area has a strong seasonal cycle and 140 complex physical oceanography tied, in part, to melting ice. We examined data from the WW 141 and CDW water masses to determine if they displayed a temporal signal by splitting the data set 142 into two groups representing samples collected at the beginning (days 1-15, n=104) versus end 143 (days 16-29, n=60) of the cruise. Mann-Whitney ranks tests of the null hypothesis that values 144 were distributed uniformly between these two groups revealed that UO rate was the only variable 145 with a significant (p < 0.05) temporal signal (Supplemental Table 5). UO rates were higher (8.4 vs 1.2 nmol N L⁻¹ d⁻¹) in CDW samples collected near the beginning of the cruise. 146

We used the same approach to determine if there were gradients within a water mass in the distributions of variables across the study area (Supplemental Figure 4). We restricted our analysis to WW and CDW water masses as many of the values for some variables were <LD in samples from the ASW and SLOPE water masses. We grouped samples by station location

151 (northeast, n=88 versus southwest, n=76; and inshore, n=86 versus offshore, n=78), as shown in 152 Supplemental Figure 1. Median AO rate was significantly higher in CDW samples from the NE 153 end of the sampling grid (10.4 vs 3.2 nmol N L⁻¹ d⁻¹, p<0.05) and at inshore stations (9.0 vs 4.9 154 nmol L⁻¹ d⁻¹, p<0.05). Median UO rates were greater in WW and CDW samples from stations on

Figure 2. Rates of AO (panel a) and UO (panel b) plotted against *in situ* temperature and salinity. The origins of samples by target water mass are indicated by line colors (legend in panel a). Samples with no activity have been assigned values of 0.1 nmol L^{-1} N d⁻¹. The areas of the red bubbles at (35, -2) are scaled to 20 nmol N L^{-1} d⁻¹.

the NE end of the sampling grid (2.0 vs 0.8 nmol N L⁻¹ d⁻¹ and 8.8 vs 1.4 nmol L⁻¹ d⁻¹, respectively; *p*<0.05; Supplemental Table 5). WW samples were both warmer and saltier at the NE end of the sampling grid, while CDW samples were warmer at offshore stations (Supplemental Table 5). **Differences between** water masses. Rates of AO and UO differed significantly (p=0.008) between water masses (Figure 2, Supplemental Table 6). Rates measured in samples from the WW averaged 21.2 and 1.6

174	nmol N $L^{-1} d^{-1}$ (values <ld (21),="" 0,="" 2.5<="" 7.9="" and="" averaged="" cdw="" in="" samples="" set="" th="" those="" to="" while=""></ld>
175	nmol N L ⁻¹ d ⁻¹ for AO and UO, respectively (Supplemental Table 4). AO and UO rates were
176	<LD ($<$ 4.3 and $<$ 0.6 nmol N L ⁻¹ d ⁻¹ for AO and UO, respectively) in many of the samples from
177	the ASW and SLOPE water masses (Supplemental Table 1). Means over all samples of the
178	oxidation rates of N supplied as NH_4^+ or urea were 10.8 (n=216, range 0-158) and 2.5 (n=217,
179	range 0-120) nmol N L ⁻¹ d ⁻¹ , respectively (Supplemental Table 4). The highest UO rates (114
180	and 120 nmol N L ⁻¹ d ⁻¹ , Figure 2b) were from replicates of one CDW sample with an elevated
181	urea concentration (2,060 nM). If these outliers are removed, the mean UO rate is $1.5 \text{ nmol N } \text{L}^{-1}$
182	d ⁻¹ (range 0-14).
183	Ammonium concentrations were greatest in samples from the ASW and WW, with mean
184	concentrations of 930 and 620 nM that were not significantly different at $p < 0.01$ (Supplemental
185	Table 4, Supplemental Table 6). Ammonium concentration decreased with depth to mean
186	concentrations of 160 and 200 nM in CDW and SLOPE samples, respectively. Ammonium
187	concentrations were generally higher than those of urea (averages of 500 versus 130 nM over all
188	samples), with no statistically significant differences between water masses (Supplemental Table
189	4, Supplemental Table 6). Both data sets contained outliers that were excluded from these
190	calculations and $\mathrm{NH_4^+}$ data are missing for some samples. The mean ratios of N available as
191	urea versus NH_4^+ were 0.34, 0.36, 0.95 and 0.31 in ASW, WW, CDW and SLOPE water
192	samples, respectively, if one outlier from a SLOPE water sample (urea concentration 1,800 nM,
193	resulting in a urea-N/NH ₄ ⁺ ratio of 57) is excluded.
194	The abundances of all of the genes we measured (Supplemental Table 4, Supplemental
195	Figure 5) were statistically significantly different ($p < 0.01$) between the 4 water masses
196	(Supplemental Table 6). The mean abundance of 16S rRNA (rrs hereinafter) from Bacteria

197	decreased with increasing depth from 1.3 x 10^9 copies L ⁻¹ in samples from ASW to 0.01 x 10^9
198	copies L ⁻¹ in samples from SLOPE water. In contrast, the mean abundance of Thaumarchaeota
199	<i>rrs</i> increased from 550 x 10^3 copies L ⁻¹ in ASW samples to 9,700 x 10^3 copies L ⁻¹ in WW and
200	CDW samples, then decreased to 2,400 x 10^3 copies L ⁻¹ in SLOPE water samples. As a
201	consequence of these distributions, the contribution of Thaumarchaeota to prokaryotes increased
202	with depth, from a mean of 0.2% in ASW samples to a mean of 26% in SLOPE water samples.
203	Mean concentrations of <i>amoA</i> genes (WCA+WCB, 22) were 214 and 4,040 x 10 ³ copies
204	L ⁻¹ in WW and CDW samples, respectively (Supplemental Table 4). These values are
205	significantly lower than concentrations we measured in samples from the same water masses in
206	2011 (LMG1101, 23) using the Wuchter et al. (24) primer set: 4,100 and 12,500 x 10^3 copies L ⁻¹ ,
207	p < 0.0001 and $p = 0.0002$, respectively). We also found that the mean of the ratios of <i>amoA/rrs</i>
208	genes in a given sample were lower on LMG1801 than LMG1101: 0.02 versus 1.7 ($p < 0.0001$)
209	and 0.46 versus 1.6 ($p = 0.0005$) for WW and CDW samples, respectively. The same <i>rrs</i> primers
210	(25) were used in both studies, yielding much smaller, though statistically significant
211	(p<0.0001), differences in <i>rrs</i> abundances between cruises: 9,700 versus 2,900 and 9,600 versus
212	16,000 x 10 ³ copies L ⁻¹ for WW and CDW samples collected on LMG1801 versus LMG1101.
213	While some of the difference in <i>amoA</i> abundance between cruises may be attributed to
214	interannual variability in the actual abundance or composition of AOA populations at the study
215	site, it is more likely that it reflects amplification bias of the Mosier and Francis (22) versus
216	Wuchter et al. (24) primers in our samples. Differences by water mass in the ratio of <i>amoA:rrs</i>
217	in samples from LMG1801 suggest that amoA abundance is underestimated to a greater extent in
218	WW populations, dominated by Shallow Water Clade A AOA, compared to CDW samples,
219	dominated by Deep Water Clade B AOA (23).

220	Nitrospina, a dominant clade of nitrite oxidizers in the sea, may contribute to urease
221	activity (26-28) and thus the production of NH_4^+ from urea. We detected <i>Nitrospina rrs</i> (29)
222	throughout the water column (Supplemental Table 1) with greatest mean abundances in the WW
223	and CDW water masses (675 and 583 x 10^3 copies L ⁻¹ , respectively (Supplemental Table 4),
224	which were not significantly different ($p = 0.095$, Supplemental Table 6). The abundances of
225	Nitrospina rrs in ASW and SLOPE water masses were lower and they were not significantly
226	different from each other (mean abundances of 94 versus 180 x 10^3 copies L ⁻¹ , respectively, $p =$
227	0.50, Supplemental Tables 4 and 6).
228	Thaumarchaeota <i>ureC</i> genes (12) were also distributed throughout the water column,
229	with greatest mean abundance (1,200 x 10 ³ copies L ⁻¹ , Supplemental Table 4) in the CDW water
230	mass. The distribution of Thaumarchaeota <i>ureC</i> was similar to that of Thaumarchaeota <i>rrs</i> and
231	<i>Nitrospina rrs</i> , with lower concentrations in the ASW and SLOPE water masses (32 and 50 x 10^3
232	copies L ⁻¹ , respectively, Supplemental Table 4). Mean ratios of Thaumarchaeota <i>ureC/rrs</i> were
233	0.15 for samples from the ASW, 0.05 for the WW, 0.13 for the CDW, 0.02 for the SLOPE and
234	0.09 over all depths. Kruskal-Wallis ranks tests demonstrated that the ratios differed by water
235	mass (Supplemental Table 6) and revealed that the median ratio for CDW samples was
236	significantly greater (p <0.0001) than ratios for WW and SLOPE data, but that ratios for the other
237	pairwise comparisons were not significantly different ($p>0.01$).
238	
239	DISCUSSION
240	Response of rates to substrate amendments. Detection of N oxidation rates may
241	require amendments of ¹⁵ N-labeled substrates that significantly increase the concentration of

total (labeled plus unlabeled) substrate in samples. Further, environmental concentrations of

NH4⁺ and urea may fluctuate *in situ* depending on localized coupling between regeneration and
uptake or oxidation, subjecting nitrifiers to short-term, temporal variation in substrate
concentrations (14, 30, 31) that may influence rates. Elevated substrate concentration may
influence nitrite production via enzyme kinetics (32, 33) or by increasing production of toxic byproducts (34).

248 Inhibition of AO and UO in response to elevated substrate concentrations has been 249 observed in other studies, but the phenomenon does not appear to have been fully assimilated 250 into the conceptual model of Thaumarchaeota ecophysiology. AO and UO rates measured in 251 samples from the 1% light level (51 m) during a period of active upwelling (March 2015) at the 252 SPOT station off southern California (15) decreased in response to ¹⁵N amendments to samples 253 with ambient NH4⁺ and urea-N concentrations of 10 nM and 190 nM (enrichment factors of 150-254 2,500% and 8-130%, respectively; Figure 5 in Laperriere et al, 15). Although not discussed in 255 their paper, Shiozaki et al. (17) found that urea amendments of 1,560 nM (mean enrichment 256 factor: 2,312%) inhibited UO rates 50 to 77% relative to rates measured with 31 nM amendments 257 (mean enrichment factor: 145%) in 3 samples from the 0.1% light level in the Beaufort Sea 258 (calculated from their Supplemental Dataset 1). They did not test the effect of NH₄⁺ amendments 259 on AO rates on this cruise; however, Shiozaki et al. (31) performed similar experiments with 260 ¹⁵NH₄⁺ amendments ranging from 31 to 1,560 nM (mean enrichment factors: 208 and 5,540%) 261 using samples from the 0.1% light level at 15 stations on a meridional transect of the North 262 Pacific. These experiments, reported in their Figure 4a and Supplemental Table 1, showed no 263 clear response of AO to amendments: AO rates increased in 6 and decreased in 7 samples where 264 AO rates were >LD. The mean change of AO rates with amendments of 1,560 nM versus 31 nM was 105% (range 44-273%). The smallest $^{15}NH_4^+$ amendments used in this study (31 nM) 265

represent larger enrichment factors (194% to infinity for 12 samples from the North Pacific Gyre where ambient $[NH_4^+]$ was undetectable in 3 samples, and 101-105% for 3 samples from the Bering Sea with high $[NH_4^+]$) than the 6 nM amendments used in our experiments (range 100-140% for both substrates).

270 A mechanism that might explain the response of CDW AOA to substrate amendments is 271 sensitivity to reactive oxygen species (ROS) or reactive nitrogen species (RNS) produced during 272 ammonia oxidation, particularly under conditions of elevated substrate concentrations (34). 273 AOA are known to be inhibited by ROS species, including HOOH (34, 35), and previous work 274 in our study area (36) verifies that these AOA populations are no exception. We hypothesize that 275 ROS produced in response to elevated substrate concentrations caused by our amendments can 276 reach toxic levels intracellularly or in the immediate vicinity of the cells, inhibiting further 277 oxidation of N supplied as NH_4^+ or urea. The greater inhibition of CDW populations by NH_4^+ vs 278 urea may be due to the slower rate at which N from urea versus NH₄⁺ is oxidized, and thus ROS/RNS is produced, in these samples (21.2 vs 1.6 nmol N $L^{-1} d^{-1}$ for AO vs UO, respectively, 279 280 for all WW samples; 7.9 vs 2.5 (outlier excluded), in all CDW samples, Supplemental Table 4). 281 It is also likely that sensitivity to, or production of, ROS/RNS varies among AOA clades 282 (34). Gene ratios in samples collected on LMG1801 (Supplemental Figure 5), as well as more 283 rigorous analyses performed previously (23, 37, 38), demonstrate that WW and CDW 284 Thaumarchaeota populations are phylogenetically distinct. This difference may influence the 285 rates at which they produce, or detoxify, ROS/RNS. 286 Alternatively, elevated [NH4⁺] may result in a shift in the N oxidation pathway resulting

in an increase in the ratio of $N_2O:NO_2^-$ produced, as reported by Frey et al. (33). Our

experimental protocol would not have captured ¹⁵N₂O or other gaseous intermediates, potentially
underestimating N oxidation rates.

290	Our observations (Figure 1) and those of others cited above suggest that amendments that
291	increase substrate concentrations significantly can affect the rates measured, and not as expected
292	from simple Michaelis-Menten enzyme kinetic considerations. Over our entire data set of >200
293	measurements, amendments of 44 nM $^{15}\mathrm{NH_4^+}$ resulted in enrichment factors of 124% \pm 29%
294	(mean \pm SD); 112 \pm 12% in WW samples and 146 \pm 28% in CDW samples. $^{15}N\text{-}u\text{rea}$
295	amendments (47 nM) resulted in enrichment factors of 274 \pm 256%: 319 \pm 382% and 290 \pm
296	190% in samples from the WW and CDW, respectively. Assuming that AOA populations in our
297	samples responded to substrate enrichments similarly to those in our experiments, and that 6 nM
298	represents a true "tracer" amendment, the AO and UO rates we measured in WW samples may
299	overestimate in situ rates by 184 and 110%, respectively, while those for CDW samples may be
300	25% and 77% of the in situ rates, on average. Differential inhibition may account for the
301	differences in mean rates (Figure 2, Supplemental Table 4) and in mean cell-specific rates (31 vs
302	17 fmol N cell ⁻¹ d ⁻¹ , Mann-Whitney 2-tail $p = 0.0063$) between WW vs CDW samples. We have
303	not corrected the data reported in Supplemental Table 1 for these differences.

Table 1. Comparison of the response of AO and UO rates to amendments of 44 vs 6 or 440 vs 44 nM amendments. *P*-values are for 2-tailed *t*-tests.

	r				
	Ratio c	of rates	Ratio of I	rates	
	with 4	4 vs 6	with 440	vs 44	
	n	М	nM		
	amenc	lments	amendm	ents	
	Mean	n	Mean	n	р
AO WW	1.84	2	1.01	3	0.062
AO CDW	0.25	3	0.42	4	0.069
UO WW	1.28	3	0.84	3	0.101
UO CDW	0.77	3	0.72	3	0.765

Rate measurements made in open ocean samples where [NH4⁺] and [urea] are in the low nM range typically use substrate amendments that range from 30 to 50 nM. Measured rates are thus likely to have been affected by the change

204

311	in substrate concentration due to the tracer amendment. The data suggest that the effect is very
312	nonlinear (Figure 1; Figure 5 in Laperriere et al, 15; Figure 4a in Shiozaki et al, 17; Shiozaki et
313	al, 31; Kim et al, 34). Comparisons between rates measured with 30-50 nM additions and rates
314	measured with much higher substrate additions may show little response (e.g. Shiozaki et al, 31)
315	because the threshold for response is lower than 30-50 nM. Table 1 compares rates we measured
316	with 44 or 47 nM amendments with those measured with 440 or 470 nM amendments, by water
317	mass. Although the differences are not statistically significant, responses of rates to 440 vs 44
318	nM amendments are damped relative to 44 vs 6 nM amendments, especially for AO. Finally, our
319	data suggest that, compared to WW populations, CDW AOA are poorly adapted to fluctuations
320	in substrate concentrations that might arise from uncoupling between production and
321	consumption of NH_4^+ (14, 30, 31), or patchiness (39-41). This may be a defining characteristic of
322	the ecophysiology of epipelagic versus mesopelagic AOA.
323	Relationships among variables. We compared the distribution of AO and UO to the
324	distribution of relevant marker genes and environmental variables (Supplemental Figures 6 and
325	7, Supplemental Table 7). Rates that were <ld (21),="" 0="" although<="" analysis="" for="" set="" td="" this="" to="" were=""></ld>
326	using all data yielded essentially the same results. We found statistically significant correlations
327	between the abundance of <i>Nitrospina rrs</i> genes and AO or UO rates (AO all data: $r^2=0.43$,
328	p=0.001; UO all data: r ² =0.21, $p=0.004$). The relationships were stronger for WW samples than
329	for CDW samples (Supplemental Table 7). The "reciprocal feeding" model (42) for the role of
330	Nitrospina in ammonia oxidation predicts a positive relationship between Nitrospina abundance

and AO. While urease activity associated with *Nitrospina* may be an explanation for the

332 correlations we observed, the correlation could also be based on other factors, such as urea

333 supply or the rate of nitrite production in a sample by combined AO + UO.

AO rates were significantly positively correlated with $[NH_4^+]$ in CDW samples and weakly correlated with the abundances of Thaumarchaeota *rrs* and with *Nitrospina rrs* genes (Supplementary Figure 6, Supplemental Table 7: for all samples, Thaumarchaeota *rrs* genes r=0.26, *p*=0.002). UO rates were significantly positively correlated with both $[NH_4^+]$ and [urea]in CDW samples.

339 The abundance of Thaumarchaeota *ureC* genes was significantly correlated with the 340 abundance of Thaumarchaeota rrs genes (Supplemental Table 7). We found no significant 341 correlations between the abundance of Thaumarchaeota ureC genes and either [NH₄⁺] or [urea], 342 or with the ratio ($[urea-N]/[NH_4^+]$), or with the ratio ($[urea-N]/([urea-N+NH_4^+])$), in any of the 343 water masses we sampled (Supplemental Figure 5, panels g and h). The ratio of Thaumarchaeota 344 *ureC* to Thaumarchaeota *rrs* genes was greatest in CDW samples (regression slope = 0.13, mean 345 of the ratio of ureC/rrs for data from the same sample = 0.13) and distinct from the ratio in WW 346 samples (regression slope 0.03, mean ratio of ureC/rrs = 0.05; Supplemental Tables 4 and 7). 347 These *ureC/rrs* ratios are lower than those reported by Alonso-Sáez et al. (12): 0.09 vs 348 0.76 for all of their data, 0.09 vs 0.51 for their data with an outlier removed, (p < 0.0001 in both 349 cases), and did not increase with depth (model 2 r = -0.13, p=0.08). We examined their data, 350 reported in their supplemental tables S4 and S5. The relationship between Thaumarchaeota 351 *ureC/rrs* and depth was strongly influenced by the value of one outlier that was based on a *ureC* 352 analysis with a very high standard deviation (mean \pm SD = 21.95 \pm 10.09). The correlation between 353 the ratio of Thaumarchaeota *ureC/rrs* and depth was not statistically significant, regardless of 354 whether the outlier is included ($r^2=0.03$, p=0.15), or not ($r^2=0.03$, p=0.16). Within the CDW data 355 set that was the basis for the conclusion that Thaumarchaeota ureC/rrs ratios increase with depth,

Figure 3. Oxidation rates of urea-N versus NH_4^+ -N. Data points are means of duplicate UO and AO rates measured for a given sample. Red horizontal and vertical lines indicate the limits of detection estimated for these measurements. Outliers (WW: 114, 2.5 and 101, 3.8; CDW: 17.8, 117) have been omitted from the plot. ASW samples are shown as x, WW samples are shown as \Box , CDW samples are shown as Δ , and SLOPE samples are shown as O.

the mean Thaumarchaeota ureC/rrs ratio was 2.67, but without the outlier it was 1.04. The ratio of Thaumarchaeota ureC/rrs does not appear to be a good predictor of the contribution of urea to nitrification, and there seems to be little change with depth in the contribution of urea to nitrite production, at least in our study area.

The means of

370 duplicate measurements of AO and UO were not correlated: r=0.12, p=0.24 for WW samples and 371 r=0.13, p=0.14 for CDW samples (Figure 3). The mean ratio of UO/AO from the complete data 372 set (n=43 for samples where rates of both replicate analyses were >LD) was 0.39 with a range of 373 0.02-6.6 (Supplemental Table 7). The ratio of 6.6 was from one sample with an unusually high 374 urea concentration. The mean ratio is 0.25, with a range of 0.02-0.94, when this outlier is 375 excluded from the calculation. Ratios of UO/AO measured in the WW water mass averaged 0.18 376 while those in samples from the CDW water mass averaged 0.64 (0.33 with the outlier excluded). These values are significantly different (Mann-Whitney ranks tests, p = 0.013, CDW 377 378 outlier removed). Wan et al. (14) also found that UO/AO increased with depth based on samples

379	from 4 depths at 4 stations in the north Pacific. This trend might be an artifact of greater
380	inhibition of AO than UO in CDW (mesopelagic) samples due to ¹⁵ N amendments.
381	Contribution of urea-N to nitrification. We explored the relationships between rates
382	and variables, or combinations of variables, related to AO and UO to determine if they could be
383	used to predict activity. We found no statistically significant relationships between UO and
384	[NH4 ⁺] or [urea] when all samples were considered together, or in the subset of WW samples
385	(Supplemental Table 7). We found that UO was positively correlated with both $[NH_4^+]$ and
386	[urea] in CDW samples (Supplemental Table 7), indicating that UO was not inhibited by [NH4 ⁺],
387	in contrast to experiments with Chukchi Sea populations (17).
388	UO correlated significantly with the contribution of urea-N to oxidizable N,
389	approximated as ([urea-N]/([urea-N]+[NH4 ⁺])), when all samples were considered together
390	($p=0.003$), but the correlation was weak ($r=0.23$) and was not significant when considered by
391	water mass (Supplemental Table 7). The ratio of rates (UO/AO) was predicted by the ratio of
392	[urea-N] to [NH4 ⁺] (Figure 4, panel a); however, this relationship was not consistent between
393	water masses (WW slope = 0.49 , r= 0.38 , CDW slope = 0.21 , r= 0.92). The best predictor of
394	UO/AO in a sample was ([urea-N]/([urea-N]+[NH ₄ ⁺])) in the same sample (Figure 4, panel b).
395	With the caveat that the number of samples from each water mass with data allowing the
396	calculation of both parameters was small, we found that the strength of this relationship differed
397	between water masses: r=0.43 for WW samples, but r=0.86 for samples from the CDW and
398	r=0.73 for the combined WW+CDW data set. The slopes of the regressions (Figure 4b: 1.01,
399	1.48 and 1.19 for WW, CDW and All Data, respectively) were not significantly different
400	(p<0.05). However, neither of these parameters was a good predictor of the absolute rate of UO.

Figure 4. Ratio of the oxidation rates of urea-N to NH_4^+ -N (UO/AO) versus: a) the ratio of [urea-N] to $[NH_4^+$ -N] measured in the same sample; and b) the contribution of urea-N to oxidizable N ([urea-N]/([urea-N] + $[NH_4^+$ -N])). UO and AO are means of duplicate rate measurements made for a particular sample (station and depth). Model 2 OLS regression lines, correlation coefficients and *p*-values for the correlation are shown. The heavy regression line in panel b) is for all data (WW + CDW combined). Symbols as in Figure 3. And, while we found a strong relationship between UO/AO and ([urea-N]/([urea-N]+[NH4⁺])) in our study area, this relationship does not hold for data from studies of other locations (Gulf of Mexico, 16; Arctic Ocean, 17), where all required variables are available for this analysis.

Supplemental Table 8 compares data from LMG1801 with ratios of the oxidation rates of N supplied as urea versus NH_4^+ (UO/AO) calculated from data in other studies. Data from LMG1801 indicate that the contribution of urea-N to nitrite production on the continental shelf west of the Antarctic Peninsula was ~25% of that produced by AO, and that its contribution became relatively more important as the contribution of urea to oxidizable N

increases. Values at other locations range from very small contributions of urea to nitrite
production (Gulf of Mexico) to urea supplying most of the N oxidized to nitrite (LMG1101 WW,

423 deep water at the SPOT time series station, Bering/Chukchi Seas). We found no relationship

424 between UO/AO and measures of the relative availability of urea-N in the other data sets we 425 examined, including our data from the South Atlantic Bight (43). SPOT data (15) suggest an 426 increase with depth in the contribution of urea to nitrification, as do data presented by Wan et al. 427 (14), and as we found on LMG1801; however, data reported by Shiozaki et al, (17) have the 428 opposite trend (contribution of UO decreases with depth). These data demonstrate that the 429 contribution of urea to nitrification in the open ocean can be significant, but it appears to be 430 highly variable and the data do not support the general conclusion that the contribution of urea-N 431 to nitrite production is enhanced in Antarctic coastal (polar) waters relative to sites at lower 432 latitudes (12).

433

434 CONCLUSIONS

435 The response of N oxidation rates to substrate amendments was complex, with measured 436 rates increasing slightly with increases in total substrate concentration for WW samples, but 437 strongly inhibited in CDW samples. Inhibition may have been caused by increased production of 438 reactive oxygen or nitrogen species accompanying oxidation of NH₄⁺ or urea-N, or by shifts in 439 the end-product from nitrite to N_2O , as total substrate concentration increased. This may be a 440 general problem for rate measurements made in samples from the mesopelagic zone of the open 441 ocean and suggests that mesopelagic Thaumarchaeota populations are not well-adapted to short-442 term fluctuations in substrate concentration. 443 Urea-N contributed significantly to the production of nitrite in samples from the

444 continental shelf and slope west of the Antarctic Peninsula. Oxidation rates of urea-N were 25%,

445 on average, of the oxidation rates of NH_4^+ , similar to the contribution of urea to nitrite

446 production in Georgia coastal waters (43) and in contrast to a greater contribution of urea to

447	nitrite production in polar waters suggested by others (12). Oxidation rates of urea-N were not
448	correlated with the ratio of Thaumarchaeota $ureC/16S$ rRNA, nor with [NH ₄ ⁺], [urea] or rates of
449	$\mathrm{NH_{4}^{+}}$ oxidation. Oxidation of urea-N was not inhibited by elevated $\mathrm{NH_{4}^{+}}$ concentrations.
450	

- 451 MATERIALS AND METHODS (1,247 words)
- 452 A more detailed description of sample collection, processing and analysis is presented in453 the Supplemental Material linked to this article.

454 **Sample Collection**. We sampled the continental shelf and slope west of the Antarctic 455 Peninsula (Supplemental Figure 1) during the austral summer of 2018 (ARV Laurence M Gould 456 cruise LMG1801, PAL-LTER cruise 26, DOI: 10.7284/907858). Sampling focused on 3 or 4 457 depths at each station, chosen to represent Antarctic Surface Water (ASW, samples from 10 or 458 15 m), Winter Water (WW, samples from 35 to 100 m, targeting the water column temperature 459 minimum), Circumpolar Deep Water (CDW, samples from 175 to 1,000 m depth) and slope 460 water (SLOPE, samples from 2,500 to 3,048 m depth, generally ~ 10 m above the bottom at 461 stations on the slope or over basins on the shelf). Water was collected in Niskin bottles (General 462 Oceanics Inc., Miami, FL, USA). Samples for DNA and nutrient analyses were drained into 463 opaque 2 L HDPE plastic bottles. Water for incubations was drained into aged, acid-washed, 464 sample-rinsed polycarbonate bottles (Nalge) that were kept in cardboard boxes to minimize 465 exposure to light. 466 DNA samples were filtered under pressure through 0.22 µm pore size Sterivex filters 467 (EMD Millipore, Billerica, MA, USA). Residual seawater was expelled, then lysis buffer (0.75

- 468 M sucrose, 40 mM EDTA, 50 mM Tris, pH 8.3) was added to the filter capsule, which was
- 469 capped, frozen, then stored at -80 °C. Samples of the Sterivex filtrate were frozen at -80 °C for

470	subsequent chemical analyses. One set of filtrate samples was stored briefly at 4 °C, then used
471	for onboard determination of ammonium concentration by the <i>o</i> -phthaldialdehyde method (44).
472	Urea was determined manually from frozen samples by the diacetyl monoxime method (45, 46).
473	Gene abundance. DNA was recovered from Sterivex filters using a lysozyme and
474	proteinase K digestion, followed by phenol-chloroform extraction (47). Archaea and Bacteria
475	genes in the extracts were quantified by PCR (qPCR). The primers and probes used, PCR
476	reaction conditions and our estimates of the precision of the measurements are given in
477	Supplemental Table 9.
478	Nitrogen oxidation rates. AO and UO were measured using ¹⁵ N-labeled substrates.
479	Substrates were added to samples within ~1 hr of collection to yield ~44 nM of $^{15}NH_4^+$ (32, 48,
480	49) or ~47 nM of urea (94 nM of urea- 15 N). These amendments increased substrate
481	concentrations in the samples ((($[^{15}N \text{ amendment}] + [ambient])/([ambient]))*100$) by an average
482	of 125%, range: 101-202% and 102-1,800% for $\mathrm{NH_4^+}$ and urea, respectively. Labeled substrates
483	were added to duplicate bottles that were incubated in the dark for ~48 hr. Incubation
484	temperature averaged 0.23 °C with a standard deviation of 0.71 °C. Incubations were terminated
485	by decanting \sim 40 mL subsamples into plastic tubes that were immediately frozen at -80 °C.
486	We ran experiments with samples from 2 depths at 3 stations to verify that ¹⁵ N oxidation
487	rates did not change significantly during incubations (Supplemental Figure 8), to assess the effect
488	of substrate amendments on measured rates (Figure 1, Supplemental Figure 2), and to assess the
489	effect of incubation temperature on measured rates (Supplemental Figure 3). The characteristics
490	of the samples used in these experiments compared favorably (Supplemental Table 4, t-test,
491	p>0.01) with mean conditions over all samples from the same water mass, with few exceptions:
492	the concentrations <i>ureC</i> and WCB <i>amoA</i> genes and T in the WW sample from Station 600.040B;

AO in the WW sample from Station 149.-050; and the concentrations of NH4⁺ and Bacteria *rrs* 493 494 in the WW sample from Station 200.000, which were all significantly greater than water mass 495 means (Supplemental Table 4). Rates calculated from single-point determinations, (end-points of 496 samples from the survey, from experiments, or the 48 hr points from time courses), agreed well 497 with rates estimated from the slopes of regressions of time course data (Supplemental Table 10). 498 Rates estimated from slopes were generally lower than rates calculated from end-point 499 determinations, which assume intercepts of 0, while intercepts of regressions ranged from -0.25 500 to 1.41 nmol L^{-1} .

¹⁵N in nitrite plus nitrate. The ¹⁵N content of NO_2^- plus NO_3^- (¹⁵NO_x) of our samples was measured using the 'denitrifier method' (50) with *Pseudomonas aureofaciens* as described previously (49). The N₂O produced was analyzed using a Gas Bench II coupled to a Finnegan MAT 252 mass spectrometer (51, 52).

Rate calculations. Our rate measurements are based on the production of ${}^{15}NO_x$ from 505 ¹⁵N labeled substrates. We calculated oxidation rates by comparing δ^{15} N values of the NO_x pool 506 507 at the ends of the incubations with values in unamended samples ("natural abundance"), as described previously (49). We assumed that the δ^{15} N value of naturally occurring ammonium 508 509 and urea is the same as that of N₂ in air. Chemical data needed for rate calculations were not 510 available for some samples (see Supplemental Table 1), so we substituted water mass averages 511 (Supplemental Table 4) determined from other samples taken on the cruise. Samples with low or no activity sometimes yielded negative rates because the $\delta^{15}NO_x$ "natural abundance" value 512 determined for that sample was greater than the $\delta^{15}NO_x$ value determined for the amended 513 514 treatment sampled at the end of the incubation. These values were set to 0(21) for statistical

analyses. Note that the rates we report are for N oxidized, regardless of whether it was supplied as NH_4^+ or urea.

517	Precision and accuracy . Analytical uncertainty of $\delta^{15}N$ measurements ranged from
518	0.36‰ to 0.56‰. Accuracy was 0.42‰ (at-% $^{15}N = 0.00019$, n = 56). The precision of
519	nitrite+nitrate analyses run by PAL-LTER personnel was reported to be 100 nM. We determined
520	the precision of ammonium and urea analyses as the mean standard deviation of replicate (2 or 3)
521	analyses of a given sample. They are: ammonium, 65 nM; urea, 10 nM. We ran 10,000 Monte
522	Carlo simulations using cruise means of these variables and their precisions to estimate the
523	precision of the resulting rate measurements. These are: 2.3 nmol N L ⁻¹ d ⁻¹ for AO and 0.31 nmol
524	N L ⁻¹ d ⁻¹ for UO; for relative standard deviations (RSD; ((standard deviation/mean) x 100)) of
525	15% and 11%, respectively, of calculated rates. The limit of detection for a measurement was set
526	at 1.96 times the precision of the measurement.
527	Statistical analyses. Rates that were below the limits of detection as established above,
528	were assigned values of 0 (21). We tested for spatial gradients in the distributions of variables
529	across the study area within a water mass (Supplemental Figure 4) by grouping stations by
530	location (northeast versus southwest, inshore versus offshore), as shown in Supplemental Figure
531	1. Assignments of individual stations to these groups are given in Supplemental Table 1. We
532	used Mann-Whitney ranks tests to determine if variables were distributed uniformly across the
533	study area within a water mass, and Kruskal-Wallis ranks tests of the significance of differences
534	between the 4 water masses sampled. Variables that were not uniformly distributed among water
535	masses (most of them) were analyzed further using post hoc Dunn tests, with p-values adjusted

536 for false discovery rate using the Benjamini-Hochberg correction, to identify sets that differed

537 significantly at p < 0.01. Pearson product moment regressions run in VassarStats

538	(http://vassarstats.net/, [©] R. Lowry) were used to obtain slopes of time courses. We used model 2
539	ordinary least square regressions run in R (53) to test for correlations between variables.
540	Data archives. The data we collected on LMG1801 are archived by the Biological and
541	Chemical Oceanography Data Management Office (BCO-DMO) under project acronym
542	"Oxidation of Urea N," doi:10.26008/1912/bco-dmo.840629.2, https://www.bco-
543	dmo.org/dataset/840629/data.The data used in the analyses presented here are reported in
544	Supplemental Table 1, with summaries by water mass given in Supplemental Table 4.

545

546 **CONFLICTS OF INTEREST** (7 words)

- 547 The authors declare no conflicts of interest.
- 548
- 549 ACKNOWLEDGMENTS (121 words)
- 550 We thank the officers and crew of the ARSV Laurence M Gould and staff of Raytheon
- 551 Polar Services Company, especially Diane Hutt, for their support during cruise LMG1801, and
- personnel affiliated with the Palmer LTER (funded through Grant NSF PLR 1440435) for
- additional support on LMG1801 and for subsequent access to project data. We would also like to
- thank S. Rauch at BCO-DMO for her assistance in archiving the data from this project and T.
- 555 Hastings for just being there. This work was supported by the US National Science Foundation
- through grants OPP 1643466, (to JTH) and OPP 1643354 (to BNP). This is SOEST contribution
- 557 number XXXX.
- 558

559 AUTHOR CONTRIBUTIONS (40 words)

- 560 JTH and BNP designed the research; JTH, BNP and HD conducted the sampling
- 561 program; JTH, JD, AO-O, NJW, TA and BNP contributed to sample analysis; JTH and BNP
- analyzed the data, JTH wrote the paper with input from the coauthors.
- 563

564 LIST OF FIGURES AND TABLES (2,213 words)

565

566	Figure 1. Oxidation rates of N supplied as NH_4^+ (AO, panel a) or urea (UO, panel b) as
567	functions of amendments with ¹⁵ N-labeled substrates (as nmol L ⁻¹ of the substrate, not of N in
568	the case of urea). This figure combines data from 3 stations as indicated by the legend in panel a.
569	Sample depths are given in Supplemental Table 1. Rates have been normalized relative to the
570	rate measured in the same sample with a 6 nM amendment: ((rate at X nM/rate at 6 nM)*100).
571	Amendments are normalized (as "enrichment factor") as the increase in total substrate
572	concentration relative to ambient: (((amendment + ambient)/ambient)*100). Vertical and
573	horizontal dashed lines show 100%: no enrichment and no response, respectively.
574	Figure 2. Rates of AO (panel a) and UO (panel b) plotted against <i>in situ</i> temperature and
575	salinity. The origins of samples by target water mass are indicated by line colors. Samples with
576	no activity have been assigned values of 0.1 nmol L^{-1} N d ⁻¹ . The areas of the red bubbles at (35, -
577	2) are scaled to 20 nmol N $L^{-1} d^{-1}$
578	Figure 3. Oxidation rates of urea-N versus NH4 ⁺ -N. Data points are means of duplicate
579	UO and AO rates measured for a given sample. Red horizontal and vertical lines indicate the
580	limits of detection estimated for these measurements. Outliers (WW: 114, 2.5 and 101, 3.8;
581	CDW: 17.8, 117) have been omitted from the plot. ASW samples are shown as x, WW samples
582	are shown as \Box , CDW samples are shown as Δ , and SLOPE samples are shown as \bigcirc .
583	Figure 4. Ratio of the oxidation rates of urea-N to NH ₄ ⁺ -N (UO/AO) versus: a) the ratio
584	of [urea-N] to $[NH_4^+-N]$ measured in the same sample: and b) the contribution of urea-N to
585	oxidizable N ([urea-N]/([urea-N] + [NH ₄ ⁺ -N])). UO and AO are means of duplicate rate
586	measurements made for a particular sample (station and donth) Model 2 OI S regression lines
500	measurements made for a particular sample (station and deput). Woder 2 OLS regression miles,

Hollibaugh et al. 2024, Page 28 of 43

587	correlation coefficients and <i>p</i> -values for the correlation are shown. The heavy regression line in
588	panel b) is for all data (WW + CDW combined). Symbols as in Figure 3.

589

590	Supplemental Figure 1. Chart of the study area. The orange double line separates
591	stations assigned to the NE vs SW groups. Symbols for nearshore stations are green squares,
592	symbols for offshore stations are blue circles. Stations used to validate our experimental
593	protocols are indicated by an X. Line numbers correspond to the PAL LTER grid numbering
594	system (https://pallter.marine.rutgers.edu/). Base map courtesy LTER Network Office
595	(<u>https://lternet.edu/</u>).
596	Supplemental Figure 2. Oxidation rates of N supplied as NH_4^+ (AO) or urea (UO) as
597	functions of ¹⁵ N-labeled substrate amendments (as nmol L ⁻¹ of the substrate, not of N in the case
598	of urea). Solid bars are WW samples, cross-hatched bars are CDW samples. Sample depths are
599	given in Supplemental Table 1.
600	Supplemental Figure 3. Response of AO rates to incubation temperature. Points from
601	duplicate rate measurements overlap in some cases. Primary data (panel a) were transformed as
602	the square root of the data normalized against the highest rate recorded (panel b; 54, 55).
603	Supplemental Figure 4. Distribution of variables related to the oxidation of NH_4^+ or
604	urea-N across the study area, by water mass. The data for a given variable from a given water
605	mass were tested (see Supplemental Table 5) for random distribution between pairs of
606	geographic groups as indicated in Supplemental Figure 1. See Supplemental Table 1 for
607	assignments of individual stations to groups. The areas of the circles on each plot are scaled to
608	values of the variable, with a key given at position: (latitude, longitude) -62, -76 on each panel.
600	The last class shows the locations of all complex token from a given water mass. Measurements

610	that were below the limits of detection(LD) have been set to 0 and thus are not shown on the
611	plots. Sample temperatures were re-scaled to values >0 °C by adding 2 °C to all measured values.
612	Base map courtesy LTER Network Office (https://lternet.edu/). Columns (left to right): 1,
613	abundance of Bacteria 16S rRNA genes (rrs, 10 ⁹ copies L ⁻¹ , LD=0.01); 2, Thaumarchaeota 16S
614	rRNA genes (<i>rrs</i> , 10 ³ copies L ⁻¹ , LD=3.9); 3, Thaumarchaeota ammonia monooxygenase genes
615	(<i>amoA</i> , 10^3 copies L ⁻¹ , LD=2.0); 4, the α subunit of Thaumarchaeota urease (<i>ureC</i> , 10^3 copies L ⁻
616	¹ , LD=15.7); 5, Nitrospina 16S rRNA genes (rrs, 10 ³ copies L ⁻¹ , LD=3.9); 6, oxidation rate of
617	NH4 ⁺ N (AO, nmol N L ⁻¹ d ⁻¹ , LD=4.3); 7, oxidation rate of urea-N (UO, nmol N L ⁻¹ d ⁻¹ ,
618	LD=0.61); 8, sample temperature (°C + 2); 9, sample salinity (PSU).
619	Supplemental Figure 5. Biplots of gene abundances by water mass. ASW omitted
620	because of minimal data. a) Thaumarchaeota amoA vs Thaumarchaeota rrs, b) Thaumarchaeota
621	<i>ureC</i> vs Thaumarchaeota <i>rrs</i> , c) Thaumarchaeota <i>ureC</i> vs Thaumarchaeota <i>amoA</i> , d)
622	Thaumarchaeota <i>ureC</i> vs Nitrospina <i>rrs</i> , e) Thaumarchaeota <i>ureC</i> vs [urea], f) Thaumarchaeota
623	ureC vs [NH ₄ ⁺], g) Thaumarchaeota $ureC$ vs ([urea]/[NH ₄ ⁺]), h) Thaumarchaeota $ureC$ vs [urea-
624	N]/([urea-N]+[NH ₄ ⁺]). Slopes, coefficients of determination and p -values of the correlation
625	("NS" = p >0.05) are from model II ordinary least squares regressions. Trend lines are shown for
626	significant ($p < 0.05$) regressions. The legend in panel a) shows line styles used for each water
627	mass. Samples from the WW water mass are shown as \Box , samples from CDW are shown as Δ ,
628	and samples from SLOPE water are shown as X . Outliers have been omitted from some of the
629	plots (see panels) to improve the resolution of points near the origins.
630	Supplemental Figure 6. Oxidation rates of N supplied as NH4 ⁺ versus values of selected
631	environmental variables measured in the same sample. a) Thaumarchaeota rrs, b)
632	Thaumarchaeota <i>amoA</i> , c) Thaumarchaeota <i>ureC</i> , d) Nitrospina <i>rrs</i> , e) [NH4 ⁺], f) [urea].

Samples from the WW are shown as □, samples from the CDW are shown as △, and samples of
SLOPE water are shown as X. Red horizontal lines indicate the limits of detection for rate
measurements. The significance of model 2 regressions of subsets of the data are given in
Supplemental Table 7.

637 **Supplemental Figure 7.** Oxidation rates of N supplied as urea (UO) versus values of 638 selected environmental variables measured in the same sample. a) Thaumarchaeota *rrs*, b) 639 Thaumarchaeota *amoA*, c) Thaumarchaeota *ureC*, d) Nitrospina *rrs*, e) $[NH_4^+]$, f) [urea], g) ratio 640 ($[urea-N]/[NH_4^+]$), h) urea availability ($[urea-N]/([urea-N] + [NH_4^+])$). The significance of model 641 2 regressions of subsets of the data are given in Supplemental Table 7. Symbols as in 642 Supplemental Figure 6. Some points have been omitted from the plots (see panels) to improve 643 the resolution of points near the origins.

644 **Supplemental Figure 8.** Time courses of the production of ¹⁵NO_x from ¹⁵N-labeled 645 NH₄⁺ and urea. Samples were collected at the stations and depths indicated, replicate 250 mL 646 bottles were amended with 44 or 47 nM ¹⁵N-labeled NH₄⁺ or urea, respectively, then incubated 647 in the same incubator as survey measurements. Duplicate bottles were removed at the times 648 shown, 40 mL was decanted from each bottle into a centrifuge tube and frozen at -80 °C until 649 they could be analyzed for ¹⁵NO_x content. Time course data were analyzed to determine the slope 650 of the Pearson product moment regressions shown as dashed lines if r²>0.5.

- 651
- Table 1. Comparison of the response of AO and UO rates to amendments of 44 vs 6 or
 440 vs 44 nM amendments. *P*-values are for 2-tailed *t*-tests.
- 654

655 Supplemental Table 1. Data collected on cruise LMG1801. The two rows labeled 656 "Measurement Precision" and "Limit of Detection" provide estimates of those values for the data 657 in the columns below the entries. See text for details. Column headings give measurement names 658 and units and are generally self-explanatory. Cells in the "Experimental Replicate" column 659 containing the text "48 hr", "44 nM" and "T=0" are from experiments to verify our protocols 660 (respectively: time courses, concentration dependence, and temperature dependence). Replicates 661 from survey measurements are labeled "A" and "B". Environmental and qPCR data for a given 662 sample are listed with the "A" replicate of survey measurements, though they also apply to the 663 "B" replicate. Blank cells indicate no data. Outliers enclosed in parentheses have been excluded 664 from calculations of descriptive statistics (presented in Supplemental Table 4) for the water mass 665 in which they occur. Shading indicates water mass designation (ASW 0-34 m; WW 35-100 m; 666 CDW 175-1,000 m; SLOPE 2,500-3,048 m).

667 **Supplemental Table 2.** Comparisons of changes in the oxidation rates of N supplied as 668 NH_4^+ or urea in response to substrate amendments. Rates shown in Supplemental Figure 2 were 669 normalized as percentages of the highest rate in a set (substrate, station, water mass, amendments 670 being compared; e.g. NH₄⁺, Station 600.180, WW, 6 vs 44 nM). The mean normalized scores 671 (e.g. NH_4^+ , all stations, WW, all 6 nM amendments) were calculated and are reported in the top 3 672 rows of each section. The *p*-values reported are for 2-tailed *t*-tests of the significance of the 673 difference between the normalized scores for the two amendments being compared (n1 and n2 674 independent samples, unequal sample variance). Values of p < 0.01 are shown in **BOLD**.

675 Supplemental Table 3. Q₁₀ and T_{min} values calculated from data in Supplemental Figure 676 3. T_{min} values calculated as per (54).

677	Supplemental Table 4. Descriptive statistics of water mass properties and comparison
678	to values from samples used to test experimental protocols. Columns at right give the means of
679	duplicate rate measurements made for that sample (station and depth, Supplemental Table 1).
680	Means that were less than the limit of detection (<ld) calculations.<="" excluded="" from="" further="" td="" were=""></ld)>
681	AO = oxidation of ammonia N, UO = oxidation of urea-N. Rows at the bottom of the table
682	compare values of variables and parameters from samples used in tests with the mean value from
683	the same water mass. Values that are significantly different from the water mass mean at $p < 0.01$
684	(mean \pm (2.3263 * stdev.s)) are indicated in <i>BOLD RED ITALICS</i> . Blank cells indicate no data
685	for that variable or parameter. Shading highlights water mass designations.
686	Supplemental Table 5. Results of Mann-Whitney ranks tests of the distribution of
687	variables across the study area by sampling day and geographic location. Areal distributions of
688	the data by water mass are shown in Supplemental Figure 4. The stations were assigned to
689	subsets by sampling day ("Days 1-15" vs "Days 16-30") and geographic region ("Northeast" vs
690	"Southwest" or "Inshore" vs "Offshore,"), see Supplemental Table 1 for assignments of
691	individual stations to groups. Data from a given water mass were tested to determine if their
692	distribution between subsets was random (H ₀ is that there is no difference between subsets,
693	rejected if $p < 0.01$, highlighted in BOLD RED ITALICS). Values given are the means of each
694	subset followed by the probability that the distribution of values between subsets is random. One
695	outlier from the CDW, offshore, urea data (2,060 nM) was excluded from calculations. We did
696	not test the ASW or SLOPE data sets because most of the samples from those water masses were
697	collected during the first half of the cruise (days 1-15). The SLOPE data sets are small ($n \le 16$,
698	including duplicate measurements of the same sample), there were too few measurements of the
699	abundance of some genes in ASW samples, and too many values of ammonia and urea oxidation

700	rates in the ASW water mass were below the limit of detection, thus assigned values of 0, for
701	tests of spatial distributions within this water mass to be meaningful.
702	Supplemental Table 6. Results of Kruskal-Wallis ranks tests of the uniformity of the
703	distribution of variables among water masses.
704	Supplemental Table 7. Summary of Model II, ordinary least squares regressions of
705	variables related to the oxidation of N supplied as NH_4^+ or urea in samples collected on
706	LMG1801. n is the number of observations, r is the correlation coefficient, P is the probability
707	that the slope $\neq 0$ and was derived from 999 bootstrap iterations. Rates <ld assigned<="" td="" were=""></ld>
708	values of 0 for the analyses. Ratios used means of duplicate rates measured in a given sample
709	where both rates are >LD. AO – oxidation of NH_4^+ -N; UO – oxidation of urea-N.
710	Supplemental Table 8 . Contribution of urea-N relative to NH_4^+ to nitrite production
711	measured in other studies.
712	Supplemental Table 9. Primers and probes used in this study, qPCR cycling program,
713	number of plates run, primer efficiencies and limits of detection.
714	Supplemental Table 10. Comparison of N oxidation rates from time courses of ${}^{15}NO_x$
715	production with measurements from other experiments with the same sample. Rates were
716	calculated from time courses as the slopes of Pearson product-moment regressions and are
717	reported as "rate (r ² , lower 99% CL-upper 99% CL)." "Rates from 48 hr points" are calculated
718	from samples taken at ~48 hours during time course incubations. "Rates from end-point
719	determinations" are from incubations that were only sampled once after ~48 hr of incubation.
720	"Survey" samples were from the survey of nitrification rates across the study area. "44 nM" are
721	from samples amended with 44 or 47 nM of ¹⁵ N-labeled substrate as part of a study of the
722	response of nitrifiers to higher or lower substrate concentrations. "Temp = 0 " samples were part

- of a study to assess the effect of incubation temperature on rates. "Rep A" and "Rep B" indicate
- separate independent incubations (replicates). "dup" indicates samples for which ¹⁵NO_x analyses
- 725 were replicated. "ASW," Antarctic Surface Water, samples from 10-15 m; "WW," Winter Water,
- samples from the temperature minimum between 35-100 m; "CDW," Circumpolar Deep Water,
- 727 175-1000 m. Rates that are significantly different (99% CL) from rates determined by time
- 728 course regressions are indicated by **BOLD RED ITALICS**.

729 LITERATURE CITED (1,690 words)

730	1.	Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005.
731		Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546.
732	2.	Prosser JI, Nicol GW. 2008. Relative contributions of archaea and bacteria to aerobic
733		ammonia oxidation in the environment. Environmental Microbiology 10:2931-2941.
734	3.	Ward BB, Arp DJ, Klotz MG. 2011. Nitrification. ASM Press, Washington, D.C.
735	4.	DeLong EF, Wu KY, Prezelin BB, Jovine RVM. 1994. High abundance of Archaea in
736		Antarctic marine picoplankton. Nature 371:695-697.
737	5.	Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH, DeLong EF. 1998. Vertical
738		distribution and temporal variation of marine planktonic archaea in the Gerlache Strait,
739		Antarctica, during early spring. Limnology and Oceanography 43:607-617.
740	6.	Murray AE, Wu KY, Moyer CL, Karl DM, DeLong EF. 1999. Evidence for circumpolar
741		distribution of planktonic Archaea in the Southern Ocean. Aquatic Microbial Ecology
742		18:263-273.
743	7.	Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-i, Sugahara J, Preston
744		C, de la Torre J, Richardson PM, DeLong EF. 2006. Genomic analysis of the
745		uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proceedings of the National
746		Academy of Sciences 103:18296-18301.
747	8.	Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M,
748		Schloter M, Wagner M, Richter A, Schleper C. 2011. Nitrososphaera viennensis, an
749		ammonia oxidizing archaeon from soil. Proceedings of the National Academy of
750		Sciences 108:8420-8425.

751	9.	Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE,
752		Moffett JW, Armbrust EV, Stahl DA. 2014. Marine ammonia-oxidizing archaeal isolates
753		display obligate mixotrophy and wide ecotypic variation. Proceedings of the National
754		Academy of Sciences 111:12504-12509.
755	10.	Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JAL, Volland J-M,
756		Srivastava A, Schleper C, Herndl GJ. 2016. Physiological and genomic characterization
757		of two novel marine thaumarchaeal strains indicates niche differentiation. ISME Journal
758		10:1051-1063.
759	11.	Carini P, Dupont CL, Santoro AE. 2018. Patterns of thaumarchaeal gene expression in
760		culture and diverse marine environments. Environmental Microbiology 20:2112-2124.
761	12.	Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, Lovejoy C,
762		Tremblay J-É, Potvin M, Heinrich F, Estrada M, Riemann L, Bork P, Pedrós-Alió C,
763		Bertilsson S. 2012. Role for urea in nitrification by polar marine Archaea. Proceedings of
764		the National Academy of Sciences 109:17989-17994.
765	13.	Pedneault E, Galand PE, Potvin M, Tremblay J-É, Lovejoy C. 2014. Archaeal amoA and
766		ureC genes and their transcriptional activity in the Arctic Ocean. Scientific Reports
767		4:4661.
768	14.	Wan XS, Sheng H-X, Dai M, Church MJ, Zou W, Li X, Hutchins DA, Ward BB, Kao S-
769		J. 2021. Phytoplankton-nitrifier interactions control the geographic distribution of nitrite
770		in the upper ocean. Global Biogeochemical Cycles 35:e2021GB007072.
771	15.	Laperriere SM, Morando M, Capone DG, Gunderson T, Smith JM, Santoro AE. 2021.
772		Nitrification and nitrous oxide dynamics in the Southern California Bight. Limnology and
773		Oceanography 66:1099-1112.

774	16.	Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, Könneke M,
775		Littmann S, Mooshammer M, Niggemann J, Petrov S, Richter A, Stewart FJ, Wagner M,
776		Kuypers MMM, Bristow LA. 2019. Cyanate and urea are substrates for nitrification by
777		Thaumarchaeota in the marine environment. Nature Microbiology 4:234-243.
778	17.	Shiozaki T, Hashihama F, Endo H, Ijichi M, Takeda N, Makabe A, Fujiwara A, Nishino
779		S, Harada N. 2021. Assimilation and oxidation of urea-derived nitrogen in the summer
780		Arctic Ocean. Limnology and Oceanography 66:4159-4170.
781	18.	Martinson DG, Stammerjohn SE, Iannuzzi RA, Smith RC, Vernet M. 2008. Western
782		Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep Sea
783		Research Part II: Topical Studies in Oceanography 55:1964-1987.
784	19.	Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM. 2003.
785		Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the
786		Antarctic Peninsula. Limnology and Oceanography 48:1893-1902.
787	20.	Baer SE, Connelly TL, Sipler RE, Yager PL, Bronk DA. 2014. Effect of temperature on
788		rates of ammonium uptake and nitrification in the western coastal Arctic during winter,
789		spring, and summer. Global Biogeochemical Cycles 28:1455-1466.
790	21.	EPA. 2000. Practical Methods for Data Analysis Information OoE, US Environmental
791		Protection Agency, Washington DC.
792	22.	Mosier AC, Francis CA. 2011. 9. Determining the distribution of marine and coastal
793		ammonia-oxidizing Archaea and Bacteria using a quantitative approach. Methods in
794		Enzymology 486:205-221.

795	23.	Tolar BB.	Ross ML	Wallsprove N	L Liu O	Aluwihare LI	Popp B	N. Hollibaugh JT.
175	23.	10101 DD	10000 1010,	" and store it	$v, \perp v < v$, 1 114 / 11141 C L1	, i opp D	1, 11011104451101.

- 2016. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal
 waters. ISME Journal 10:2605–2619.
- 798 24. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M,
- 799 Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damste JS. 2006. Archaeal
- 800 nitrification in the ocean. Proceedings of the National Academy of Sciences 103:12317-
- 801 12322.
- 802 25. Suzuki MT, Taylor LT, DeLong EF. 2000. Quantitative analysis of small-subunit rRNA
- genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental
 Microbiology 66:4605-4614.
- 805 26. Kitzinger K, Marchant HK, Bristow LA, Herbold CW, Padilla CC, Kidane AT, Littmann
- 806 S, Daims H, Pjevac P, Stewart FJ, Wagner M, Kuypers MMM. 2020. Single cell analyses
- 807 reveal contrasting life strategies of the two main nitrifiers in the ocean. Nature
- 808 Communications 11:767.
- 809 27. Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, Mathyer ME,
- 810 Hallam SJ, Lopez-Garcia P, Takaki Y, Nunoura T, Woyke T, Herndl GJ, Stepanauskas R.
- 811 2017. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science
- 812 358:1046.
- 813 28. Widner B, Fuchsman CA, Chang BX, Rocap G, Mulholland MR. 2018. Utilization of
- 814 urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen
- 815 deficient zone. FEMS Microbiology Ecology 94.

816	29.	Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. 2007. Quantitative
817		distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the
818		North Pacific Subtropical Gyre. Environmental Microbiology 9:1162-1175.
819	30.	Baer SE, Sipler RE, Roberts QN, Yager PL, Frischer ME, Bronk DA. 2017. Seasonal
820		nitrogen uptake and regeneration in the western coastal Arctic. Limnology and
821		Oceanography 62:2463-2479.
822	31.	Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K-i, Ehama M, Hayashizaki K-i,
823		Takahashi K, Hamasaki K, Furuya K. 2016. Nitrification and its influence on
824		biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME Journal
825		10:2184–2197.
826	32.	Ward BB, O'Mullan GD. 2005. 24. Community level analysis: genetic and
827		biogeochemical approaches to investigate community composition and function in
828		aerobic ammonia oxidation. , p 395-413, Methods in Enzymology, vol 397. Elsevier Inc.,
829		New York.
830	33.	Frey C, Sun X, Szemberski L, Casciotti KL, Garcia-Robledo E, Jayakumar A, Kelly CL,
831		Lehmann MF, Ward BB. 2023. Kinetics of nitrous oxide production from ammonia
832		oxidation in the Eastern Tropical North Pacific. Limnology and Oceanography 68:424-
833		438.
834	34.	Kim J-G, Park S-J, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung M-Y, Kim S-J,
835		Gwak J-H, Hong H, Si O-J, Lee S, Madsen EL, Rhee S-K. 2016. Hydrogen peroxide
836		detoxification is a key mechanism for growth of ammonia-oxidizing archaea.
837		Proceedings of the National Academy of Sciences 113:7888-7893.

Hollibaugh et al. 2024, Page 40 of 43

- 838 35. Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E, Ingalls AE, Stahl
- B39 DA. 2017. Influence of oxygen availability on the activities of ammonia-oxidizing
- archaea. Environmental Microbiology Reports 9:250-256.
- 36. Tolar BB, Powers LC, Miller WL, Wallsgrove NJ, Popp BN, Hollibaugh JT. 2016.
- 842 Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of
- 843 hydrogen peroxide. Frontiers in Marine Science 3.
- 844 37. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF. 1998.
- 845 Seasonal and spatial variability of Bacterial and Archaeal assemblages in the coastal
- 846 waters near Anvers Island, Antarctica. Applied and Environmental Microbiology
- 84764:2585-2595.
- 848 38. Kalanetra KM, Bano N, Hollibaugh JT. 2009. Ammonia-oxidizing *Archaea* in the Arctic
 849 Ocean and Antarctic coastal waters. Environmental Microbiology 11:2434–2445.
- Shanks AL, Trent JD. 1979. Marine snow: Microscale nutrient patches1. Limnology and
 Oceanography 24:850-854.
- 40. Alldredge AL, Silver MW. 1988. Characteristics, dynamics and significance of marine
 snow. Progress in Oceanography 20:41-82.
- 41. Stocker R. 2012. Marine Microbes See a Sea of Gradients. Science 338:628-633.
- 42. Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, Nielsen PH, Wagner
- 856 M, Daims H. 2015. Expanded metabolic versatility of ubiquitous nitrite-oxidizing
- bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences
- 858 112:11371–11376.

859	43.	Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. 2017. Oxidation of urea-derived			
860		nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environmental			
861		Microbiology 19:4838-4850.			
862	44.	Holmes RM, Aminot A, Kerouel R, Hooker BA, Peterson BJ. 1999. A simple and precise			
863		method for measuring ammonium in marine and freshwater ecosystems. Canadian			
864		Journal of Fisheries and Aquatic Science 56:1801-1808.			
865	45.	Rahmatullah M, Boyde TRC. 1980. Improvements in the determination of urea using			
866		diacetyl monoxime; methods with and without deproteinisation. Clinica Chimica Acta			
867		107:3-9.			
868	46.	Mulvenna PF, Savidge G. 1992. A modified manual method for the determination of urea			
869		in seawater using diacetylmonoxime reagent. Estuarine, Coastal and Shelf Science			
870		34:429-438.			
871	47.	Tolar BB, King GM, Hollibaugh JT. 2013. An analysis of Thaumarchaeota populations			
872		from the Northern Gulf of Mexico. Frontiers in Microbiology 4:72.			
873	48.	Santoro AE, Casciotti KL, Francis CA. 2010. Activity, abundance and diversity of			
874		nitrifying archaea and bacteria in the central California Current. Environmental			
875		Microbiology 12:1989–2006.			
876	49.	Beman JM, Chow C-E, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp			
877		BN, Hutchins DA. 2011. Global declines in oceanic nitrification rates as a consequence			
878		of ocean acidification. Proceedings of the National Academy of Sciences 108:208-213.			
879	50.	Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK. 2001. A			
880		bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater.			
881		Analytical Chemistry 73:4145-4153.			

882	51.	Popp BN. Sansone	FJ. Rust TM	. Merritt DA.	1995. Determination	of concentration and
			,	.,		

- carbon isotopic composition of dissolved methane in sediments and nearshore waters.
- Analytical Chemistry 67:405-411.
- 52. Dore JE, Popp BN, Karl DM, Sansone FJ. 1998. A large source of atmospheric nitrous

oxide from subtropical North Pacific surface waters. Nature 396:63-66.

- 53. Legendre P. 2001. Model II regression User's guide. Département de sciences
- 888 biologiques, Université de Montréal, Montreal, Quebec, Canada.
- 889 54. Ratkowsky DA, Olley J, McMeekin TA, Ball A. 1982. Relationship between temperature
- and growth rate of bacterial cultures. Journal of Bacteriology 149:1-5.
- 891 55. Li WKW, Dickie PM. 1987. Temperature characteristics of photosynthetic and
- 892 heterotrophic activities seasonal variations in temperate microbial plankton. Applied
- and Environmental Microbiology 53:2282-2295.